CLASS-10 MTS-1

MATHEMATICS -041

Time Allowed: 3 Hours
Roll No.:

Maximum MARKS :80
 Date: 27/01/2023

CODE - I

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D, and E.
2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
6. Section E has 3 Case Based integrated units of assessment (4 marks each) with sub- parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

SECTION - A		
	Section A consists of 20 questions of 1 mark each.	
S.NO		Marks
1.	The smallest number divisible by all natural numbers from 1 to 10 is (a) 2020 (b) 2520 (c)1010 (d) 5040	1
2.	If the roots of $x^{2}+4 m x+4 m^{2}-m-1=0$ are real, then (a) $m=-1$ (b) $m \leq-1$ (c) $m \geq-1$ (d) $m \geq 0$	1
3.	If one zero of the polynomial $x^{2}-8 x+k$ exceeds the other by 2 , then the value of k is (a) 35 (b) 25 (c)15 (d)5	1
4.	The pair of equations $2 x+k y=1$ and $5 x-7 y=5$ has no solution when (a) $k=\frac{13}{5}$ (b) $k=\frac{-13}{5}$ (c) $k=\frac{-14}{5}$ (d) $k=\frac{-16}{5}$	1
5.	AOBC is rectangle whose three vertices are $\mathrm{A}(0,3) \mathrm{B}(5,0)$ and $\mathrm{O}(0,0)$. The length of its diagonal is (a) 5 (b) 4 (c) $\sqrt{34}$ (d $\sqrt{44}$	1
6.	In $\triangle A B C$ and $\triangle D E F, \angle B=\angle E, \angle F=\angle C$ and $\mathrm{AB}=3 \mathrm{DE}$. Then the two triangles are (a)congruent but not similar (b) similar but not congruent (c)neither congruent nor similar (d)congruent as well as similar	1

7.	In the given figure $\mathrm{AB}=a, \mathrm{AC}=b, \mathrm{AD}=\mathrm{BD}$ and $\angle B=90^{\circ}$, then the value of $\tan \theta$ is (a) $\frac{a}{2 \sqrt{b^{2-} a^{2}}}$ (b) $\frac{a}{\sqrt{b^{2}-a^{2}}}$ (c) $\frac{b}{\sqrt{a^{2}+b^{2}}}$ (d) $\frac{b}{2 \sqrt{a^{2}+b^{2}}}$	1	
8.	In the figure given, $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{BD}=3 \mathrm{~cm}, \mathrm{CD}=12 \mathrm{~cm}$ then $\sec \theta$ is (a) $\frac{5}{12}$ (b) $\frac{12}{5}$ (c) $\frac{13}{5}$ (d) $\frac{12}{13}$	1	
9.	D and E are respectively the points on the sides $A B$ and $A C$ of $\triangle A B C$ such that $A D=2 \mathrm{~cm}, B D=3 \mathrm{~cm}, B C=7.5 \mathrm{~cm}$ and $D E \\| B C$, then the length of $D E$ (in cm) is (a) 2.5 (b) 3 (c) 5 (d) 6	1	
10.	$\triangle A B C \sim \triangle D E F$, such that $A B=9.1 \mathrm{~cm}$ and $D E=6.5 \mathrm{~cm}$. If the perimeter of $\triangle D E F$ is 25 cm , then the perimeter of $\triangle A B C$ is (a) 36 cm (b) 30 cm (c) 34 cm (d) 35 cm	1	
11.	In the figure, AB is a chord of a circle with centre O and $A C$ is the diameter. $\angle A C B=50^{\circ}$, and AP is a tangent to the circle at A. Then $\angle B A P$ is (a) 65° (b) 60° (c) 50° (d) 40°	1	
12.	If the areas of 2 circles are is the ratio $4: 9$, then the ratio of the perimeters of the semicircles is (a) $2: 3$ (b) $3: 2$ (c) $1: 2$ (d) $1: 3$	1	
13.	From a solid, right circular cylinder of height 14 cm and base radius 6 cm , a right circular cone of same height and same radius is removed. The volume of the remaining solid is (a) $1112 \mathrm{~cm}^{3}$ (b) $1056 \mathrm{~cm}^{3}$ (c) $1000 \mathrm{~cm}^{3}$ (d) $1058 \mathrm{~cm}^{3}$	1	
14.	If the mean and median of a frequency distribution are 20 and 24 respectively, then the value of mode is (a) 30 (b) 32 (c) 28 (d) 12	1	
15.	The length of the minor arc of a circle is $\left(\frac{2}{9}\right)$ th of its circumference. Then the angle subtended by the arc at the centre of the circle is (a) 80° (b) 60° (c) 45° (d) 30°	1	

16.	For the following distribution, half the sum of lower limit of median class and the upper limit of the modal class is							
	C.I	10-20	20-30	30-40	40-50	50-60	60-70	
	freq.	4	7	15	18	4	2	
	(a) 80		(b) 40	(c) 50		(d) 60		
17.	The probability of selecting a boy randomly from a class is 0.6 and there are 45 students in the class. Then the number of girls is (a) 9 (b) 12 (c) 36 (d) 18							1
18.	If $\sin \theta=\frac{1}{3}$, then the value of $3 \cot ^{2} \theta+3$ is (a) 6 (b) 9 (c) 18					d)2		1
	Direction for questions 19 \& 20: In question numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option.							1
19	Assertion : 6^{n} cannot end with the digit zero, where n is a natural number. Reason : Any number ends with the digit zero, if its prime factorization includes $2^{m} \times 5^{n}$ where m and n are whole numbers. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A). (c) Assertion (A) is true but Reason (R) is false. (d) Assertion (A) is false but Reason (R) is true.							1
20.	Assertion: A line formed by joining $(-1,3)$ and $(9,8)$ is divided by the point $(3,5)$ in the ratio $1: 3$ Reason: The co- ordinates of the point which divides the line joining (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ in the ratio $m: n$ is $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$ (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A). (c) Assertion (A) is true but Reason (R) is false. (d) Assertion (A) is false but Reason (R) is true							1
	Section B							
	Section B consists of 5 questions of 2 marks each.							
21.	Solve the following pair of linear equations for x and y.$\begin{aligned} & m x-n y=m^{2}+n^{2} \\ & x+y=2 m \end{aligned}$							2

MANAS
Studies

22.	In the given figure, $X Y \\| A B$. If $A B=4 B X$ and $Y C=2 \mathrm{~cm}$, then find AY.	2
23.	In the figure the angle between two tangents drawn from an external point P to a circle of radius 5 cm and centre O is 60°, then find the length of OP .	2
24.	The perimeter of a sector of a circle of radius 5.2 cm is 16.4 cm . Find the area of the sector. [OR] A pendulum swings through an angle of 30° and describes an arc of length 8.8 cm . Find the length of the pendulum.	2
25.	If $2 \sin (3 x-15)^{\circ}=\sqrt{3}$, find the value of $\sin ^{2}(2 x+10)$. [OR] If $\sin (A+B)=1$ and $\cos (A-B)=\frac{\sqrt{3}}{2}, 0<A+B \leq 90^{\circ}, A>B$ then find A and B.	2
	Section C	
	Section C consists of 6 questions of 3 marks each.	
26.	Prove that $7-2 \sqrt{3}$ is an irrational number.	3
27.	If the sum of the zeroes of the polynomial $(a+1) x^{2}+(2 a+3) x+(3 a+4)$ is -1 , find the product of its zeroes.	3
28.	In a painting competition of a school, a student made a flag whose perimeter was 50 cm . Its area will be decreased by $6 \mathrm{~cm}^{2}$, if length is decreased by 3 cm and breadth is increased by 2 cm , then find the dimensions of the flag. [OR] A two digit number is obtained by either multiplying the sum of the digits by 8 and subtratcting 5 or multiplying the difference of the digits by 16 and then adding 3 . Find the number .	3
29.	Prove that $\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=\sin \theta+\cos \theta$	3
30.	In the figure $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and $X^{\prime} Y^{\prime}$ at B . Find the measure of $\angle A O B$.	3

	(i)	Draw a neat labelled figure to show the above situation diagrammatically.	1
	(ii)	Find the height of the light house.	1
(iii)	Find the distance between the ships. [OR]	2	

