Studi e s

PHYSICS Section A

1. Two point charges of magnitude $+q$ and $-q$ are placed at $(-d / 2,0,0)$ and $(d / 2,0,0)$, respectively. The equation of the equipotential surface where the potential is zero is
(a) $x=0$
(b) $x=d / 2$
(c) $y=0$
(d) $z=0$
2. Consider a thin spherical shell of radius R with its centre at the origin, carrying uniform positive surface charge density. The variation of the magnitude of the electric field $|\mathrm{E}(\mathrm{r})|$ and the electric potential $V(r)$ with the distance r from the centre, is best represented by graph? [$V=\ldots$, $\mathrm{E}=----$]
(a)

(b)

(c)

(d)

3. A metallic solid sphere is placed in a uniform electric field. The lines of force follow the path shown in figure as

(a) 1
(b) 2
(c) 3
(d) 4
4. Three infinitely long charged sheets are placed as shown in figure. The electric field at point P is

(a) $\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
(b) $-\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
(c) $\frac{4 \sigma}{\varepsilon_{0}} \hat{k}$
(d) $-\frac{4 \sigma}{\varepsilon_{0}} \hat{k}$
5. Electric field inside the capacitor is E and dielectric constant of material is k. Then the charge density σ on the plates is
(Given $E=6 \times 10^{5} \mathrm{~V} / \mathrm{m}, k=6$)

(a) $4.18 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
(b) $5.18 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
(c) $6.18 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
(d) $3.18 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
6. Force of attraction between the plates of a parallel plate capacitor (field with dielectric of constant K) is
(a) $\frac{q^{2}}{2 \varepsilon_{0} A K}$
(b) $\frac{q^{2}}{\varepsilon_{0} A K}$
(c) $\frac{q^{2}}{2 \varepsilon_{0} A}$
(d) $\frac{q^{2}}{2 \varepsilon_{0} A^{2} K}$
7. Two identical charged spheres suspended from common point by two massless strings of length l , are initially at a distance $\mathrm{d}(\mathrm{d} \ll 1)$ apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v , Then v varies as a function of the distance x between the spheres, as:
(a) $v \propto x^{-1}$
(b) $v \propto x^{\frac{1}{2}}$
(c) $v \propto x$
(d) $v \propto x^{\frac{-1}{2}}$
8. A water particle of mass 100 mg and having a charge of $1.50 \times 10^{-6} \mathrm{C}$ stays suspended in a room. The magnitude and direction of electric field in the room will be?
(a) $\frac{2000}{3} \mathrm{~V} / \mathrm{m}$ upwards
(b) $\frac{2000}{3} \mathrm{~V} / \mathrm{m}$ downwards
(c) $1.5 \times 10^{3} \mathrm{~V} / \mathrm{m}$ upward
(d) $1.5 \times 10^{3} \mathrm{~V} / \mathrm{m}$ downward
9. The force between the plates of a parallel plate capacitor of capacitance C and distance of separation of the plates d with a potential difference V between the plates, is
(a) $\frac{C V^{2}}{2 d}$
(b) $\frac{C^{2} V^{2}}{2 d^{2}}$
(c) $\frac{C^{2} V^{2}}{d^{2}}$
(d) $\frac{V^{2} d}{C}$
10. Figure shows the electric lines of force emerging from a charged body. If the electric field A and B are E_{A} and E_{B} respectively and if the displacement between A and B is then

(a) $E_{A}>E_{B}$
(b) $E_{A}<E_{B}$
(c) $E_{A}=\frac{E_{B}}{r}$
(d) $E_{A}=\frac{E_{B}}{r^{2}}$
11. A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is $1.5 \times 10^{3} \mathrm{~N} / \mathrm{C}$ and points radially inward. The net charge on the sphere will be
(a) $6.67 \times 10^{-9} \mathrm{C}$
(b) $-6.67 \times 10^{-9} \mathrm{C}$
(c) $1.67 \times 10^{-9} \mathrm{C}$
(d) $-1.67 \times 10^{-9} \mathrm{C}$
12. In a certain region of space, electric field is along the z-direction throughout. The magnetic of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of $10^{5} \mathrm{NC}^{-1}$ per meter. The force experienced by a system having a total dipole moment equal to 10^{-7} Cm in the negative z-direction will be
(a) 200 N
(b) 100 N
(c) Zero
(d) None of these
13. Figure shows tracks of three charged particles in a uniform electrostatic field. The signs of the three charges.

(a) All are +Ve
(b) All are - Ve
(c) (1) and (2) are +ve but (3) is -ve
(d) (3) is +ve but (1) and (2) are -ve
14. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0 \times$ $10^{-22} \mathrm{C} / \mathrm{m}^{2}$. Electric field between the plates will be
(a) $1.9 \times 10^{-10} \mathrm{~N} / \mathrm{C}$
(b) $1.9 \times 10^{10} \mathrm{~N} / \mathrm{C}$
(c) $9.9 \times 10^{-9} \mathrm{~N} / \mathrm{C}$
(d) Zero
15. A parallel plate capacitor with air between the plates has a capacitance of $8 \mathrm{pF}(1 \mathrm{pF}=$ $10^{-12} \mathrm{~F}$). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?
(a) 48 pF
(b) 96 pF
(c) 4 pF
(d) 16 pF
16. The energy of a charged capacitor is given by the expression ($q=$ charge on the conductor and $C=$ its capacity)
(a) $\frac{q^{2}}{2 C}$
(b) $\frac{q^{2}}{C}$
(c) $2 q C$
(d) $\frac{q}{2 C^{2}}$
17. Two charges q and $-3 q$ are placed fixed on x-axis separated by distance ' d '. Where should a third charge $2 q$ be placed such that it will not experience any force?
(a) $-\frac{d}{\sqrt{3}-1}$ from q
(b) $\frac{d}{\sqrt{3}-1}$ from -3q
(c) $\frac{d}{\sqrt{3}+1}$ from q
(d) $\frac{d}{\sqrt{3}+1}$ from $-3 q$
18. Total charge $-Q$ is uniformly spread along length of a ring of radius R. A small test charge $+q$ of mass m is kept at the centre of the ring and is given a gentle push along the axis of the ring. The particle executes a simple harmonic oscillation. Its time period will be.
(a) $2 \pi \sqrt{\frac{Q q}{4 \pi \varepsilon m R^{3}}}$
(b) $-\sqrt{\frac{4 \pi \varepsilon_{0} m R^{3}}{Q q}}$
(c) $\sqrt{\frac{Q q}{4 \pi \varepsilon_{0} m R^{3}}}$
(d) $2 \pi \sqrt{\frac{4 \pi \varepsilon_{0} m R^{3}}{Q q}}$
19. Separation between the plates of a parallel plate capacitor is d and the area of each plate is A. When a slab of material of dielectric constanct K and thickness $t(t<d)$ is introduced between the plates, its capacitance becomes.
(a) $\frac{\varepsilon_{0} A}{d+t\left(1-\frac{1}{k}\right)}$
(b) $\frac{\varepsilon_{0} A}{d+t\left(1+\frac{1}{k}\right)}$
(c) $\frac{\varepsilon_{0} A}{d-t\left(1-\frac{1}{k}\right)}$
(d) $\frac{\varepsilon_{0} A}{d-t\left(1+\frac{1}{k}\right)}$

MANAS

Studi es
20. A positively charged particle is released from rest in an uniform electric field. The electic potention energy of the charge.
(a) remains constant because the electric field is uniform.
(b) increases because the charge moves along the electric field
(c) decreases because the charge moves along the electric field.
(d) decreases because the charge moves opposite to the electric field.
21. The plate separation in a parallel plate condenser is d and plate area is A. If it is charged to V volt \& battery is disconnected then the work done in increasing the plate separation to 2 d will be:
(a) $\frac{3}{2} \frac{\varepsilon_{0} A V^{2}}{d}$
(b) $\frac{\varepsilon_{0} A V^{2}}{d}$
(c) $\frac{2 \varepsilon_{0} A V^{2}}{d}$
(d) $\frac{\varepsilon_{0} A V^{2}}{2 d}$
22. Find the equivalent capacitance of the infinite ladder shown in the figure between the points A and B.

(a) $4 \mu F$
(b) $6 \mu F$
(c) $1 \mu F$
(d) $2 \mu F$
23. A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. The width of each stair is a and the height is d. Find the capacitance of the assembly.

(a) $\frac{18 \varepsilon_{0} A}{11 d}$
(b) $\frac{11 \varepsilon_{0} A}{18 d}$
(c) $\frac{13 \varepsilon_{0} A}{16 d}$
(d) $\frac{16 \varepsilon_{0} A}{13 d}$
24. Two metal spheres, one of radius R and the other of radius $2 R$, both have same surface charge density σ. They are bought in contact and separated. What will be new surface charge densities on them?
(a) $\frac{5 \sigma}{6}, \frac{5 \sigma}{3}$
(b) $\frac{3 \sigma}{5}, \frac{5 \sigma}{6}$
(c) $\frac{5 \sigma}{3}, \frac{5 \sigma}{6}$
(d) $\frac{5 \sigma}{3}, \frac{6 \sigma}{5}$
25. We have a combination as shown in following figure. Choose the correct options:

(a) Total charge in this series combination is $600 \mu C$
(b) The potential difference between the plates of C_{3} is 30 V
(c) The potential difference between the plate of C_{1} is 20 V
(d) The potential difference between the plates of C_{2} is 40 V
26. There are two metallic spheres of same radii but one is solid and the other is hollow, then
(a) Solid sphere can be given more charge
(b) Hollow sphere can be given more charge
(c) They can be charged equally (maximum)
(d) None of the above
27. Two parallel plates have equal and opposige charge. When the space between them is evacuated, the electric field between the plates is $2 \times 10^{5} \mathrm{~V} / \mathrm{m}$. When the space is filled with dielectric, the electric field becomes $1 \times 10^{5} \mathrm{~V} / \mathrm{m}$. The electric constant of the diselectric material
(a) $1 / 2$
(b) 1
(c) 2
(d) 3
28. Three equal charges are placed on the three corners of a square. If the force between q_{1} and q_{2} is F_{12} and that between q_{1} and q_{3} is F_{13}, the ratio of magnitude F_{12} / F_{13} is
(a) $1 / 2$
(b) 2
(c) $1 / \sqrt{2}$
(d) $\sqrt{2}$
29. A total charge Q is broken in two parts Q_{1} and Q_{2} and they are placed at a distance R from each other. The maximum force of repulsion between them will occur, when
(a) $Q_{2}=\frac{Q}{R}, Q_{1}=Q-\frac{Q}{R}$
(b) $Q_{2}=\frac{Q}{4}, Q_{1}=Q-\frac{2 Q}{3}$
(c) $Q_{2}=\frac{Q}{4}, Q_{1}=\frac{3 Q}{4}$
(d) $Q_{1}=\frac{Q}{2}, Q_{2}=\frac{Q}{2}$

Studi es
PART TEST-6
30. $O h m^{\prime} s$ law is true
(a)For metallic conductors at low temperature
(b) For metallic conductors at high temperature
(c) For electrolytes when current passes through them
(d) For diode when current flows.
31. An uncharged sphere of metal is placed in between two charged plates as shown. The lines of force look like

(a) A
(b) B
(c) C
(d) D
32. Three equal charges (q) are placed at corners of a equilateral triangle. The force on any charge is:
(a) Zero
(b) $\sqrt{3} \frac{K q^{2}}{a^{2}}$
(c) $\frac{K q^{2}}{\sqrt{3} a^{2}}$
(d) $\frac{3 \sqrt{3} K q^{2}}{a^{2}}$
33. The electric field components in Fig. are $E_{x}=a x^{\frac{1}{2}}, E_{y}=E_{z}=0$, in which $\alpha=$ $800 N / C M^{1 / 2}$. Calculate (a) the flux through the cube, and (b) the charge within the cube. Assume that $\quad a=0.1 \mathrm{~m}$.

(a) $\phi=1.05 \mathrm{Nm}^{2} \mathrm{C}^{-1}$, $Q=9.27 \times 10^{-12} C$
(b) $\phi=9.27 \times 10^{-12} C$, $Q=1.05 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(c) $\phi=2.10 \mathrm{Nm}^{2} \mathrm{C}^{-1}$, $Q=4.63 \times 10^{-12} C$
(d) $\phi=4.63 \mathrm{Nm}^{2} \mathrm{C}^{-1}$, $Q=2.10 \times 10^{-12} C$
34. The variation of electric field on the y-axis as a function of ' y ' is best represented by: [for the given figure]

(a)

(b)

(c)

(d)

35. A point charge $50 \mu C$ is located in the $x-y$ plane at the position vector $\quad \vec{r}_{0}=(2 \hat{\imath}+$ $3 \hat{\jmath}) \mathrm{m}$. The electric field at the point of position vector $\vec{r}=(8 \hat{\imath}-5 \hat{\jmath}) m$, in vector from is equal to:
(a) $90(-3 \hat{\imath}+4 \hat{\jmath}) \mathrm{V} / \mathrm{m}$
(b) $90(3 \hat{\imath}-4 \hat{\jmath}) \mathrm{V} / \mathrm{m}$
(c) $900(-3 \hat{\imath}+4 \hat{\jmath}) \mathrm{V} / \mathrm{m}$
(d) $900(3 \hat{\imath}-4 \hat{\jmath}) V / m$

Section B

36. Which of the following graphs shown the correct variation of electric field as a function of x along the axis of a uniformly and positively charged ring of radius R and charge Q .
(a)

(b)

(c)

(d)

37. Consider two thin uniformly charged concentric shells of radii r and $2 r$ having charges Q and $-Q$ respectively, as shown. Three points A, B and C are marked at distances $\frac{r}{2}, \frac{3 r}{2}$ and $\frac{5 r}{2}$ respectively from their common centre. If E_{A}, E_{B} and E_{C} are magnitudes of the electric fields at point A, B and C respectively then.

(a) $E_{A}>E_{B}>E_{C}$
(b) $E_{C}>E_{B}>E_{A}$
(c) $E_{B}>E_{A}=E_{C}$
(d) $E_{B}>E_{A}>E_{C}$
38. A point charge q is brought from infinity (slowly so that heat developed in the shell is negligible) and is placed at the cnetre of a conducting neutral spherical shel of inner radius a and outer radius b, then work done by external agent is:

(a) 0
(b) $\frac{k q^{2}}{2 b}$
(c) $\frac{k q^{2}}{b}-\frac{k q^{2}}{a}$
(d) $\frac{k q^{2}}{2 a}-\frac{k q^{2}}{2 b}$
39. Three charges $\mathrm{Q},+\mathrm{q}$ and +q are placed at the vertices of a right - angled isosceles triangle as shown. The net electrostatic energy of the configuration is zero if Q is equal to:

(a) $\frac{-q}{1+\sqrt{2}}$
(b) $\frac{-2 q}{2+\sqrt{2}}$
(c) $-2 q$
(d) $+q$
40. A few electric field lines for a system of two charges Q_{1} and Q_{2} fixed at two different points on the x-axis are shown in the figure. These lines suggest that

(a) $\left|Q_{1}\right|=\left|Q_{2}\right|$
(b) $\left|Q_{1}\right|<\left|Q_{2}\right|$
(c) at a finite distance to the left of Q_{1} the electric field is zero
(d) at a finite distance to the right Q_{2} the electric field is zero
41. The work done in taking a unit positive charge from P to A is W_{A} and from P to B is W_{B} then

(a) $W_{A}>W_{B}$
(b) $W_{A}<W_{B}$
(c) $W_{A}=W_{B}$
(d) $W_{A}+W_{B}=0$
42. The electric potential field depends on the x - and y - coordinates as $V=x^{2}-y^{2}$.
The corresponding electric field lines in $x y$ plane are as
(a)

(b)

(c)

(d)

43. A parallel plate capacity is connected across a battery. Now, keeping the battery connected, a dielectrici slab is inserted between the plates. In this process,
(a) no work is done
(b) Work is done by the battery, and the stored energy increases
(c) Work is done by the external agent, and the stored energy decreases.
(d) Work is done by the battery as well as the external agent, but the stored energy does not change.
44. If there were only one type of charge in the universe, then
(a) $\int_{\mathrm{s}} E . d S \neq 0$, on any surface
(b) 向. E. $d S=0$, if net charge of system is ze ${ }^{\circ}{ }^{\circ}$
(c) $\int_{\text {S }} E . d S$ could not be defined.
(d) $\int E . d S=\frac{q}{\varepsilon_{0}}$ if charges of magnitude q were inside the surface.
45. Refer to the arrangement of charges in Fig. and a Gaussian surface of radius R with Q at the centre. Then

(a) Total flux through the surface of the sphere is $\frac{-Q}{\varepsilon_{0}}$
(b) Field on the surface of the sphere is $\frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
(c) Flux through the surface of sphere due to $5 Q$ is $5 Q / \varepsilon_{0}$
(d) Field on the surface of sphere due to 2 Q is same everywhere.
46. A positive charge Q is uniformly distributed along a circular ring of radius R. A small test charge q is placed at the centre of the ring (Fig.). Then incorrect is

(a) If $q>0$ and is displaced away from the centre in the plane of the ring, it will be pushed back towards the centre.
(b) If $\mathrm{q}<0$ and is displaced away from the centre in the plane of the ring, it will never return to the centre and will continue moving till it hits the ring.
(c) If $q<0$, it will perform SHM for small displacement along the axis.
(d) q at the centre of the ring is in an unstable equilibrium within the plane of the ring for $\mathrm{q}>0$
47. Consider a sphere of radius R with charge density distribution as
$\rho(r)=k r$ for $r \leq R$

$$
=0 \text { for } r>R
$$

Find the electric field at all points $r<R$
(a) $\frac{k r}{2 \epsilon_{0}}$
(b) $\frac{k \cdot r^{2}}{4 \epsilon_{0}}$
(c) $\frac{k \cdot R^{2}}{2 \epsilon_{0}}$
(d) $\frac{k R}{4 \epsilon_{0}}$
48. In the electric field of a point charge q, a certain charge is carried from point A to B, C, D and E. Then the work done.

(a) Is least along the path $A B$
(b) Is least along the path AD
(c) Is zero along all the paths $A B, A C, A D$ and $A E$
(d) Is least along
49. If a conductor has a potential $V \neq O$ and there are no charges anywhere else outside, then
(a) there must be charges on the surface or inside itself
(b) there may be any charge in the body of the conductor
(c) there must be charges only on the surface
(d) there must be charges inside the surface.
50. Choose the correct statements
(i) Electrons move away from a region of lower potential. Since an e^{-}has negative charge
(ii) If a point charge q is placed in front of an infinite grounded conducting plane surface, the point charge will experience a force. The force is due to the induced charge on the conducting surface which is at zero potential.
(iii) Charge is invariant. Charge does not depends on speed or frame of reference.
(iv) Mass of ion slightly differed from its element. Ion is formed, when some
electrons are removed or added so mass changes.
(v) Farad is too big a unit of capacity. Capacity of earth - which is the largest sphere is in microfarad.
(vi) In a series combination of capacitors, charge on each capacitor is same. In which a combination, charge can move only along one route
(vii) A dielectric slab is inserted between the plates of an isolated charged capacitor. The charge on the capacitor will remain the same. Charge on a isolated system is conserved.
(a) All statement is correct.
(b) Only (iv) \& (v) is correct
(c) only (i), (ii), (iii), (iv), (ix) correct
(d) Only (ii) \& (v) is correct

CHEMISTRY Section A

51. An emulsifier is an agent which
(a) Accelerates the dispersion
(b) Homogenizes an emulsion
(c) Stabilizes an emulsion
(d) Aids the flocculation of an emulsion
52. Tyndall effect is not observed in
(a) Suspension
(b) True solution
(c) Emulsions
(d) Colloidal solution
53. The reaction
$\frac{1}{2} \mathrm{H}_{2}(g)+\mathrm{AgCl}(s) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{Ag}(s)$
occurs in the galvanic cell
(a $\mathrm{Ag}|\mathrm{AgCl}(s)| K C l($ soln $)\left|\mid \mathrm{AgNO}_{3}\right.$ (soln) $| \mathrm{Ag}$
(b) $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HCl}($ soln $)\left|\mid \mathrm{AgNO}_{3}(\right.$ soln $\left.)\right| \mathrm{Ag}$
(c) $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HCl}($ soln $)||\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}$
(d) $\mathrm{Pt}\left|H_{2}(\mathrm{~g})\right| K C \mathrm{Cl}$ (soln) $||\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}$
54. For the chemical reaction
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$ the correct option is:
(a) $-\frac{d\left[N_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[\mathrm{NH}_{3}\right]}{d t}$
(b) $3 \frac{d\left[H_{2}\right]}{d t}=2 \frac{d\left[N H_{3}\right]}{d t}$
(c) $-\frac{1}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}=-\frac{1}{2} \frac{d\left[\mathrm{NH}_{3}\right]}{d t}$
(d) $-\frac{d\left[N_{2}\right]}{d t}=2 \frac{d\left[\mathrm{NH}_{3}\right]}{d t}$
55. Calculate the equilibrium constant of the reaction

$$
\begin{aligned}
& C u(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow C u^{2+}(a q)+2 \mathrm{Ag}(s) \\
& E_{(\text {Cell })}^{0}=0.46 \mathrm{~V} \text { at } 298 \mathrm{~K}
\end{aligned}
$$

(a) 4×10^{5}
(b) 4×10^{17}
(c) 4×10^{15}
(d) 4×10^{21}
56. The conductivity of $0.001028 \mathrm{~mol} L^{-1}$ acetic acid is $4.95 \times 10^{-5} S \quad \mathrm{~cm}^{-1}$. Calculate its dissociation constant if Λ_{m}^{0} for acetic acid is $3900 \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(a) 48×10^{15}
(b) 0.12×10^{5}
(c) 1.78×10^{-5}
(d) 1.78×10^{5}
57. Consider the reaction:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
What is the quantity of electricity in columbs needed to reduce 1 mol of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$:
(a) 96500
(b) 289500
(c) 579000
(d) 19300
58. $\quad T_{50}$ (Half - life period) of first - order reaction is 10 minutes. Starting with 10 mol L^{-1}, rate after 20 minute is:
(a) $0.0693 \mathrm{~mol}_{L^{-1}}^{\mathrm{min}^{-1}}$
(b) $0.0693 \times 2.5 \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{~min}^{-1}$
(c) $0.0693 \times 5 \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
(d) $0.0693 \times 10 \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{~min}^{-1}$
59. The rate constant of a reaction at 500 K and 700 K are $0.02 \mathrm{~s}^{-1}$ and $0.07 \mathrm{~s}^{-1}$ respectively. Calculate the values of E_{a}.
(a) 18.23 kJ
(b) 3.23 KJ
(c) 51.23 KJ
(d) 118.23 KJ
60. Corrosion of iron is essentially an electrochemical phenomenon where the reactions are
(a)Fe is oxidized to Fe^{2+} and dissolved oxygen in water is reduced to O^{2-}
(b) Fe is oxidized to Fe^{3+} and $\mathrm{H}_{2} \mathrm{O}$ is reduced to O_{2}^{2-}
(c) Fe is oxidized to Fe^{2+} and $\mathrm{H}_{2} \mathrm{O}$ is reduced to O_{2}^{-}
(d) Fe is oxidized to Fe^{2+} and $\mathrm{H}_{2} \mathrm{O}$ is reduced to O_{2}
61. Represent the cell in which the following reaction takes places
$M g(s)+2 A g^{+}(0.0001 \mathrm{M}) \rightarrow \mathrm{Mg}^{2+}(0.130 \mathrm{M})+2 \mathrm{Ag}(\mathrm{s})$
Calculate its $E_{(\text {cell })}$ if $E_{(\text {Cell })}^{0}=3.17 \mathrm{~V}$
(a) 3.17
(b) 2.96
(c) 0.21
(d) 3.38
62. A certain zero order reaction has $\mathrm{K}=0.025 \mathrm{M} \mathrm{s}^{-1}$ for th disappearance of A . What will be the concentration of A after 15 seconds if the initial concentration is $0.50 \mathrm{M}-$
(a) 0.50 M
(b) 0.375 M
(c) 0.125 M
(d) 0.060 M
63. According to Arrhenius equation rate constant K is equal to $A e^{-E_{a} / R T}$. Which of the following options represents the graph of $\ln K$ vs $1 / T$ -
(a)

(b)

(c)

(d)

64. The standard EMF for the given cell reaction $\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}$ is, 1.10 V at $25^{\circ} \mathrm{C}$. The for the cell reaction, when $0.1 \mathrm{M} \mathrm{Cu}^{2+}$ and $0.1{\mathrm{M} \mathrm{Zn}^{2+}}^{2+}$ solutions are used, at $25^{\circ} \mathrm{C}$ is
(a) 1.10 V
(b) 0.110 V
(c) -1.10 V
(d) -0.110 V
65. Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
(a) -0.591
(b) +0.591
(c) -0.0591
(d) +0.0591
66. Calculate the emf of the cell $E_{(\text {Cell })}^{0}=1.05 \mathrm{~V}$ in which of the following reaction takes places
$\mathrm{Ni}(\mathrm{s})+2 \mathrm{Ag}^{+}(0.002 \mathrm{M}) \rightarrow \mathrm{Ni}^{2+}(0.160 \mathrm{M})+2 \mathrm{Ag}$ (s)
(a) 1.9
(b) 3.36
(c) 2.9
(d) 0.9
67. How much will the reduction potential of a hydrogen electrode change when its solution initially at $\mathrm{pH}=0$ is neutralized to $\mathrm{pH}=7$ -
(a) Increase by 0.059 V
(b) Decrease by 0.59 V
(c) Increase by 0.41 V
(d) Decrease by 0.41 V
68. At a certain temperature, the first order rate constant k_{1} is found to be smaller than the second order rate constant k_{2}. If $E_{a}(1)$ of the first order reaction is greater than E_{a} (2) of the second order reaction, then as temperature is raised:
(a) k_{2} will increase faster than k_{1}
(b) k_{1} will increase faster than k_{2} and become equal to k_{2}
(c) k_{1} will increase faster than k_{2} and become equal to k_{2}
(d) k_{1} will increase faster than k_{2} and become greater than k_{2}
69. $A \rightarrow B, \Delta H=-10 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$E_{a(\mathrm{f})}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ then E_{a} of $\mathrm{B} \rightarrow A$ will be
(a) $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $-50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
70. Which one of the following statement is wrong about adsorption-
(a) It is selective and specific process
(b) It is a reversible process
(c) An increase in the gaseous adsorbate causes an increase in a adsorption. However, at high pressure, the adsorption becomes constant.
(d) It is an endothermic process
71. The conversion of molecules X to Y follows second order kinetics. If concentation of X is increased to three times how will it affect the rate of formation of Y
(a) Increase by 9 times
(b) Increase by 6 times
(c) Increase by 18 times
(d) Increase by 3 times
72. The initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the following first order reaction
$\mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \quad$ was $1.24 \times 10^{-2} \mathrm{~mol} \mathrm{~L}{ }^{-1}$. Calculate the rate constant of the reaction at 318 K
(a) 0.304
(b) 30.4
(c) 3.04
(d) 0.0354
73. A first order reaction is found to have a rate constant, $k=5.5 \times 10^{-14} s^{-1}$. Find the half-life of the reaction.
(a) 1.26×10^{13}
(b) 2.25×10^{13}
(c) 1.26×10^{11}
(d) 2.52×10^{11}
74. A first order reaction has a rate constant $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g -
(a) 444
(b) 222
(c) 400
(d) 333
75. The electronic configuration of Cu (II) is $3 d^{9}$ whereas that of $\mathrm{Cu}(\mathrm{I})$ is $3 d^{10}$. Which of the following is correct.
(a) Cu (II)is more stable
(b) Cu (II) is less stable
(c) $C u$ (I) and $C u$ (II) are equally stable
(d) Stability of Cu (I) and Cu (II) depends on nature of copper salts
76. On addition of small amount of KMnO_{4} to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, a green oily compound is obtained which is highly explosive in nature. Identify the compound from the following.
(a) $\mathrm{Mn}_{2} \mathrm{O}_{7}$
(b) MnO_{2}
(c) MnSO_{4}
(d) $\mathrm{Mn}_{2} \mathrm{O}_{3}$
77. Which of the following oxidation state is common for all lanthanoids -
(a) +2
(b) +3
(c) +4
(d) +5
78. Which of the following is amphoteric oxide.

$$
\mathrm{Mn}_{2} \mathrm{O}_{7}, \mathrm{CrO}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}, \mathrm{~V}_{2} \mathrm{O}_{5}, \mathrm{~V}_{2} \mathrm{O}_{4}
$$

(a) $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Mn}_{2} \mathrm{O}_{7}, \mathrm{CrO}_{3}$
(c) $\mathrm{CrO}, \mathrm{V}_{2} \mathrm{O}_{5}$
(d) $V_{2} O_{5}, V_{2} O_{4}$
79. Gadolinium belongs to $4 f$ series. It's atomic number is 64 . Which of the following is the gadolininum configuration of -
(a) $[X e] 4 \mathrm{f}^{7} 5 d^{1} 6 s^{2}$
(b) $[X e] 4 \mathrm{f}^{6} 5 d^{2} 6 s^{2}$
(c) $[X e] 4 f^{8} 6 d^{2}$
(d) $[X e] 4 \mathrm{f}^{9} 5 s^{1}$
80. When acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is added to Sn^{2+} salts then Sn^{2+} changes to
(a) $S n$
(b) Sn^{3+}
(c) Sn^{4+}
(d) Sn^{+}
81. How much electricity in terms of Faraday is required to produce. 20.0 g of Ca from molten CaCl_{2} -
(a) 4 F
(b) 2 F
(c) 3 F
(d) 1 F
82. A first order reaction is 50% completed in $1.26 \times 10^{14} \mathrm{~S}$. How much time would it take for 100% completion -
(a) $1.26 \times 10^{15} \mathrm{~s}$
(b) $2.52 \times 10^{14} \mathrm{~g}$
(c) $2.5 \times 10^{28} \mathrm{~g}$
(d) infinite
83. Which of the following process does not occur at the interface of phases:
(a) crystallisation
(b) heterogenous catalysis
(c) homogeneous catalysis
(d) corrosion
84. On the basis of data given below predict which of the following gases shows least adsorption on a definite amount of charcoal-Gas
Critical temp./K $\begin{array}{llll}\mathrm{CO}_{2} & \mathrm{SO}_{4} & \mathrm{CH}_{4} & \mathrm{H}_{2} \\ 304 & 630 & 190 & 33\end{array}$
(a) CO_{2}
(b) SO_{2}
(c) CH_{4}
(d) H_{2}
85. Predict the products of electrolysis in each of the following. An aqueous solution of AgNO_{3} with silver electrodes.
(a) Ag, Ag
(b) $\mathrm{Ag}, \mathrm{O}_{2}$
(c) $\mathrm{H}_{2}, \mathrm{Ag}$
(d) $\mathrm{H}_{2}, \mathrm{O}_{2}$

Section B

86. The coagulation values in milimoles per litre of the electrolytes used for the coagulation of $\mathrm{As}_{2} S_{3}$ are given below:
I. $(\mathrm{NaCl})=52$
II. $\left(\mathrm{BaCl}_{2}\right)=0.69$
III. $\left(\mathrm{MgSO}_{4}\right)=0.22$

The correct order of their coagulation power is
(a) I $>$ II $>$ III
(b) II $>$ I $>$ III
(c) III $>$ II $>$ I
(d) III $>$ I $>$ II
87. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} at 318 K has been studied by measuring the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the solution. Initially the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 2.33 mol L^{-1} and after 184 minutes it is reduced to $2.08 \mathrm{~mol} L^{-1}$. The reaction takes place according to the equation.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

What is the rate of production of NO_{2} during this period -
(a) 9.7×10^{-5}
(b) $2.7 \times 10^{+3}$
(c) 9.7×10^{-7}
(d) 2.7×10^{-3}
88. Which plot is the adsorption isobar for physical adsorption-
(a)

(b)

(c)

(d)

89. Rate law of the reaction $A \rightarrow$ Product is, rate $=\mathrm{K}[\mathrm{A}]$. Graphically it is represented as

Hence, rate the constant is:
(a) $3 \times 10^{-4} \mathrm{~s}^{-1}$
(b) $1 \times 10^{-2} s^{-1}$
(c) $3 \times 10^{-2} s^{-1}$
(d) $1 \times 10^{-4} s^{-1}$
90. Calculate the over all order of a reaction which has the rate expression
Rate $=K[A]^{1 / 2}[B]^{3 / 2}$
(a) 1
(b) 3
(c) 2
(d) 4
91. E° of a cell $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$ is
(a) $-\frac{R T}{n F} \log \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
(b) $-R T \log \frac{[a]^{A}[b]^{B}}{[a]^{C}[d]^{D}}$
(c) $-\frac{R T}{n F} \log \frac{[C]^{c}[d]^{D}}{[A]^{a}[B]^{b}}$
(d) $-\frac{R T}{n F} \log \frac{[C]^{c}[d]^{D}}{[a]^{A}[B]^{b}}$
92. An example of micelle is
(a) $\mathrm{As}_{2} \mathrm{O}_{3}$ sol.
(b) Ruby glass
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution
(d) Sodium stearate concentrated solution
93. Assertion: According to Freundlich adsorption: $\quad \frac{X}{m}=k . P^{1 / n}$
Reason: The isotherm shown variation of the amount of gas adsorbed by the adsorbent with temperature.
(a) Assertion and reason both are true and the reason is correct explanation of assertion
(b) Assertion and reason both are ture but reason is not correct explanation of assertion
(c) Assertion is true but reason is wrong
(d) Assertion and reason both are wrong.
94. First IE of 5d series elements are higher than those of 3d and 4d series elements. This is due to:
(a) bigger size of atoms of $5 d-$ series elements thant 3d-series elements
(b) greater effective nuclear charge is experienced by valence electrons because of the weak shielding of the nucleus of $4 f$ - electrons in 5d series.
(c) (a) and (b) both
(d) None of these
95. Assertion: Transition metals show variable valence.
Reason: Due to a large energy difference between the $n s^{2}$ and ($\mathrm{n}-1$) d electrons.
(a) Assertion and reason both are true and the reason is correct explanation of assertion.
(b) Assertion and reason both are true but reason is not correct explanation of assertion.
(c) Assertion is true but reason is wrong.
(d) Assertion and reason both are wrong.
96. Which of the following statement is false:
(a) Of the d^{4} species, manganese (III) is strongly reducing while Cr^{2+} is strongly oxidizing
(b) Cobalt (II) is stable in aqueous solution but in the presence of complexing reagents it is easily oxidized
(c) The d^{1} configuration is very unstable in ions.
(d) None of these
97. Which of the following statement is correct (a) Transition metals and their many compounds act as good catalyst.
(b) The enthalpies of atomistation of the transition metals are high
(c) The transition metals generally form interstitial compounds with small atoms like C, B, H etc.
(d) All are correct.
98. The solubility of siliver bromide in hypo solution (excess) is due to the formation of:
(a) $\mathrm{Ag}_{2} \mathrm{SO}_{3}$
(b) $\mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(c) $\left[\operatorname{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)\right]^{-}$
(d) $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$
99. The cell constant of a conductivity cell
(a) Changes with change of electrolyte
(b) Changes with change of concentration of electrolyte.
(c) Changes with temperature of electrolyte
(d) remains constant for a cell.
100. Which of the following options are correct
(i) Cuprous ion is colourless where as cupric ion is blue in the aqueous solution.
(ii) The enthalpy of physisorption is greater than chemisorption.
(iii) Molecules of adsorbate and adsorbent are held by van der Waals forces in physisorption and by chemical bonds in chemisorption.
(iv) $\mathrm{ZSM}-5$ is used as a catalyst in petrochemical industries.
(v) Zeolites are three dimensional network silicates in which some silicon atoms are replaced by aluminium atoms.
(vi) For the coagulation of sols carrying positive charge, PO_{4}^{3-} ions are more efficient than SO_{4}^{2-} or Cl^{-}ions.
(vii) The overall molecularity of a complex reaction is equal to the molecularity of the slowest step.
(viii) Copper reacts with hydrochloric acid and liberates hydrogen from the solution of dilute hydrochloric aicd.
(ix) When acidified zinc sulphate solution is electrolyzed between zinc electrodes, it is zinc that is deposited at the cathode and hydrogen evolution does not take place.
(x) If $\lambda_{\mathrm{Na}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}$ are molar limiting conductivity of the sodium and chloride ions respectively, then the limiting molar conducting for sodium chloride is given by the equation:
$\Lambda_{N a \mathrm{Cl}}^{0}=\lambda_{N a^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}$
(xi) For a cell reaction $\mathrm{Zn}(s)+C u^{2+}(a q) \rightarrow$ $Z n^{2}(a q)+C u(s)$; at the equilibrium voltmeter gives zero reading. At the equilibrium, there is no change in the concentration of $\mathrm{Cu}{ }^{2+}$ and Zn^{2+} ions.
(xii) A negative value of standard reduction potential means that reduction take place on this electrode with reference to standard hydrogen electrode.
(a) (i) (ii) (iii) (iv) (v) (vi) (vii) (ix) (x) (xi)
(b) (ii) (iii) (v) (vi) (vii) (ix) (xi) (xii)
(c) (i) (ii) (iii) (iv) (v) (vi) (viii) (ix) (xi)
(d) (i) (iii) (iv) (vi) (vii) (viii) (ix) (x) (xii)

BIOLOGY Section A

101. The human male ejaculates about 200-300 million sperms during coitus. For normal fertility, how many sperms must be with high motility?
(a) 60\%
(b) 40%
(c) 20%
(d) 10%
102. Find the incorrect statement
(a) Fertilization can only occur if sperms and ovum are transported simultaneously to the ampulla
(b) All the copulations lead to fertilization and pregnany
(c) Cyclic menstruation is an indicator of normal reproductive phase
(d) LH surge induces rupture of Graafian follicle
103. Statement I : Periodic abstinence is a method in which couples avoid from coitus from day 17 to 27 of menstrual cycle.
Statement II: It is a very effective method and 100% sure of birth control.
(a) Both statements are correct
(b) Statement I is correct \& II is incorrect
(c) Statement I is incorrect \& II is correct.
(d) Both statements are incorrect
104. Match the following list of bioactive substances and their roles

Bioactive Substance

(i) Statin
(ii) Cyclosporin A
(iii) Streptokinase
(iv) Lipase

Role

(A) Removal of oil stains
(B) Removal of clots from blood vessels
(C) Lowering of bloodcholestrol (D)Immunosuppressive agent
(a) i-(B), ii- (C), iii - (A), iv - (D)
(b) i-(D), ii- (B), iii - (A), iv- (C)
(c) $\mathrm{i}-(\mathrm{D})$, ii $-(A)$, iii $-(B)$, iv $-(C)$
(d) $i-(C)$, ii - (D), iii - (B), iv - (A)
105. Mark the incorrect match
(a) Genital warts - Human papilloma virus
(b) Chlamydiasis - Trichomonas vaginalis
(c) Syphllis - Treponema pallidum
(d) Gonorrhoea - Neisseria gonorrhea
106. Heart sound of the foetus can be felt through the stethoscope as early as the end of
(a) $1^{\text {st }}$ month
(b) $3^{\text {rd }}$ month
(c) $5^{\text {th }}$ month
(d) $4^{\text {th }}$ month
107. Till approx. 48 hrs after birth, the mothers breast releases colostrum, it is rich in
(a) IgA
(b) Albumin
(c) Prolactin
(d) Oxytocin
108. The first movement of foetus observed by mother is called quickening. It is usually observed during
(a) End of $1^{\text {st }}$ trimester
(b) Early $5^{\text {th }}$ month
(c) End of $3^{\text {rd }}$ trimester
(d) Early $3^{\text {rd }}$ month
109. Pills are very effective with lesser side effects and are well accepted by the females. They prevent conception by following means
(a) Inhibit ovulation
(b) Inhibit implantation
(c)Alter quality of cervix mucus to prevent/retard entry of sperms
(d) All of these
110. Family planning programmes were initiated in 1951 and were periodically assessted over past decades. Improved programmes are currently in operation under popular name
(a)Child welfare programme
(b)Child and health care programmes
(c)Reproductive and child health care programmes
(d) Women emancipation programme
111. Opioids are the drugs which bind to specific opoid receptors present in our CNS and GIT. Heroin, commonly called smack is chemically......, which is white, odourless, bitter crystalline compound, obtained by. . of morphine?
(a) Diacetylmorphine, methylation
(b) Diacetylmorphin, acetylation
(c) Benzodiazepines, amination
(d) Amphetamines, acetylation
112. Statement I: Pills are very effective contraceptive method with lesser side effect
Statement II: Pils inhibit ovulation and implantation as well as retard entry of sperms.
(a) Both statements are correct
(b) Statement I is correct \& II is incorrect
(c) Statement I is incorrect \& II is correct
(d) Both Statements are incorrect
113. Match the column A with column B :

Column A

A. Peyer's patches
B. Rheumatoid

Arthritis
C. $\lg A$
D. Gambusia

Column B

(i)Secondary lymphoid organ
(ii) Colostrum
(iii) Autoimmunity
(iv)Mosquito Larvae
(a) A- (i), B-(iii), C- (ii), D- (iv)
(b) A - (ii), B- (iii), C- (iv), D - (i)
(c) $\mathrm{A}-$ (iv), $\mathrm{B}-$ (iii), C - (i), D - (ii)
(d) A- (i), B- (ii), C- (iv), D- (iii)
114. Most cancers are treated by combination of:
A. Surgery
B. Radiotherapy
C. Chemotherapy
(a) A and B
(b) A and C
(c) B and C
(d) A, B and C
115. Mark the correct statement:
A.Yoga has been practiced to achieve physical and mental health
B.Infectious diseases are very common and everyone of us suffers from these at sometime or other.
C.AIDS is an infectious disease
D. Cancer is non-infectious disease
E.Healthy persons bring economic prosperity
(a) A, B and C
(b) B, C, D and E
(c) C and D
(d) A, B, C, D and E
116. Below are some statements related to life cycle of plasmodium. Which of the following is correct?
(a) Gametocyte stage infects human body
(b)It multiplies by sexual method of reproduction in human liver
(c) Human RBC are ruptured and releases a toxin hemozin
(d) Development of gametocyte possible only in female culex mosquito
117. Primary response is of \qquad A intensity. Subsequent encounter with the same pathogen elicit a \qquad B \qquad intensified
\qquad C response, which is based on D

	A	B	C	D
a	High	Low	Anamnestic	Specificity
b	Low	High	Primary	Diversity
c	Low	High	Secondary	Memory
d	High	Low	Primary	Memory

118. Statement I: The regions outside the seminiferous tubules are called interstitial spacs, which contain Leydig's cell.
Statement II: Leydig's cells synthesise and screte testicular hormones called androgens.
(a) Both statements are correct
(b) Statement I is correct \& II is incorrect
(c) Statement I is incorrect \& II is correct
(d) Both Statements are incorrect
119. Assertion: Organ transplantation patients are given immunosuppressive drugs.
Reason: Transplanted tissue has antigens which stimulate the specific immune response of the recipient.
(a) Both assertion and reason are true and reason is the correct explanation of assertion
(b) Both assertion and reason are true but reason is not the correct explanation of assertion
(c) Assertion is true but reason is false
(d) Both assertion and reason are false
120. Assertion: Vigrous contraction of the uterus at the end of pregnancy cuases expulsion.
Reason: The stimulatory reflex between the uterine contraction and oxytocin results in weakning contractions.
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reason is not the correct explanation of assertion
(c) Assertion is true but reason is false
(d) Both assertion and reason are false
121. Match the items given in column I with those in Column II and select the correct option given below:

Column I	Column II
a.Proleferative phase	i.Breakdown of endometrial lining
b.Secretory phase	ii.Follicular Phase
c. Menstruation	iii. Luteal phase

	a	b	c	a	b	c
(a)	iii	ii	i	(b) i	iii	ii
(c)	ii	iii	i	(d) iii	i	ii

122. Several hormones like hCG, hPL, estrogen, progesterone is production by
(a) Ovary
(b) Placenta
(c) Fallopian tube
(d)Adrenal gland
123. Which of the following contraceptive methods involve a role of hormone?
(a) Pills, Emergency contraceptives,

Barrier methods
(b)Lactational amenorrhea, Pills, Emergency contraceptives
(c)Barrier method, Lactational amenorrhea, Pills
(d) CuT, Pills, Emergency contraceptive.
124. Which of the following sexually transmitted diseases is not completely curable?
(a) Chlamydiasis
(b) Gonorrhoea
(c) Genital warts
(d)Genital herpes
125. Identify the correct pair representing the causative agent of typhoid fever and the confirmatory test for typhoid fever and the confirmatory test for typhoid.
(a) Salmonella typhi/ Widal test
(b) Plasmodium vivax/UTI test
(c) Streptococcus pneumoniae/ Widal test
(d) Salmonella typhi/Anthrone test
126. MALT constitutes about \qquad percent of the lymphoid tissue in human body
(a) 20%
(b) 70%
(c) 10%
(d) 50%
127. Which of the following sets of diseases is caused by bacteria?
(a) Cholera and tetanus
(b) Typhoid and smallpox
(c) Tetanus and mumps
(d) Herpes and influenza
128. Match the following organisms with the products they produce.
(A) Lactobacillus
(i) Cheese
(B) Saccharomyces
(ii) Curd
Cerevisiae
(C) Aspergillus niger
(iii) Citric acid
(D) Acetobacter aceti
(iv) Bread
(v) Acetic acid

Select the correct option

	A	B	C	D
(a)	ii	i	iii	v
(b)	ii	iv	v	iii
(c)	ii	iv	iii	v
(d)	iii	iv	v	i

129. Which of the following is sewage treatment removes suspended solids?
(a) Secondary treatment
(b) Primary treatment
(c) Sludge treatment
(d) Tertiary treatment
130. Which one of the following is not a biofertiliser?
(a) Agrobacterium
(b) Rhizobium
(c) Nostoc
(d) Mycorrhiza
131. Which of the following is an auto immune disease?
(a) Myasthenia gravies
(b) AIDS
(c) Asthma
(d) Alzheimer disease
132. Match the column:

Column - I		Column - II	
a	Morphine	i	Hallucinogen
b	LSD	ii	Stimulant
c	Marijuana	iii	 analgestic
d	Coke	iv	Cannabis stiva

(a) a-iii, $\quad b-i, \quad c-i v, \quad d-i i$
(b) $a-i, \quad b-i i, c-i v, \quad d-i i i$
(c) a-ii, $\quad b-i, c-i i i, d-i v$
(d) a-iii, b-i, c-ii, d-i
133. Which of the following is not a sexually transmitted disease?
(a) AIDS
(b) Hepatitis - B
(c) Dengue
(d) Syphilis
134. In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?
(a) Elephantiasis
(b) Ringworm
(c) Ascariasis
(d) Amoebiasis
135. The masses of bacteria held together by slime and fungal filaments to form mesh like structures are called as
(a) Primary sludge
(b) Flocs
(c) Activated sludge
(d) Anaerobic sludge

Section B

136. Match the disease in column - I with the appropriate items (Pathogen/Prevention/ Treatment) in column - II

Column - I		Column - II	
a	Malaria	i	Wuchereria
b	Diphtheria	ii	Herpes simplex virus
c	Genital herpes	iii	Plasmodium
d	Elephantiasis	iv	DPT vaccine

(a) a-vi, $\quad b-i, \quad c-i i i, d-i i$
(b) a-iii, $\quad b-i v, c-i i, d-i$
(c) $a-i, \quad b-i v, c-i i i, d-i i$
(d) $a-i i, \quad b-i v, c-i i i, d-i$
137. Match the following:

Column - A		Column - B	
a	Fever	i	Cellular immunity
b	Monocyte	ii	Humoral immunity
c	T-Cells	iii	Physiological barrier
d	B-Cells	iv	Cellular barrier

(a) A-iv, $\quad B-i, \quad C-i v, D-i i$
(b) $A-i i i, \quad B-i v, C-i, \quad D-i i$
(c) $A-i i, \quad B-i v, C-i, \quad D-i i i$
(d) $A-i i, \quad B-i, C-i v, D-i i$
138. Cirrhosis of liver is related to:
(a) Smoking
(b) Opium
(c) Cocaine
(d) Alcohol
139. The principal of immunization or vaccination is based on the property of
\qquad of the immune system:
(a) Memory
(b)Opsonization
(Second step of phagocytosis)
(c) Neutralisation
(d) Suppression
140. Which of the following steps is take by the Ministry of Environment and Forests to protect rivers from water pollution?
(a) Ganga Action plan
(b) Narmada Action Plan
(c) Yamuna Action Plan
(d) Both (a) and (c)
141. Choose the incorrect statement from the following:
(a)In birds and mammals internal fertilization take place
(b)Colostrum contains antibodies and nutrients
(c)Polyspermy is never prevented by the chemical changes in the egg surface of mammals.
(d)In the human female implantation occurs almost seven days after fertilization
142. Seminal plasma, the fluid part of semen, is contributed by:
i. Seminal vesicle ii. Prostate
iii. Urethra
iv. Bulbourethral gland
(a) i only
(b) i, ii and iv
(c) ii, iii and iv
(d) i and iv
143. From the sexually transmitted diseases mentioned below, identify the one which does not specific affect the sex organs:
(a) Syphilis
(b) AIDS
(c) Gonorrhea
(d) Genital warts
144. Diseases are broadly grouped into infectious and non-infectious diseases. In the list given below, identify the infectious diseases.
(i) Cancer
(ii) Influenza
(iii) Allergy
(iv) Small pox
(a) i and ii
(b) ii and iii
(c) iii and iv
(d) ii and iv
145. The genes causing cancer are:
(a) Structural genes
(b) Expressor genes
(c) Oncogenes
(d) Regulatory genes
146. In malignant tumors, the cells proliferate, grow rapidly and move to other parts of the body to form new tumors. This stage of disease is called:
(a) Metagenesis
(b) Metastasis
(c) Teratogenesis
(Congenital malformations prodused in an embryo/foetus)
(d) Mitosis
147. 'Smack' is a drug obtained from the
(a) Latex of Papaver somniferum
(b) Leaves of Cannabis sativa
(c) Flowers of Dhatura
(d) Fruits of Erythroxyl coca
148. The vitamin whose content increases following the conversion of milk into curd by lactic acid bacteria is:
(a) Vitamin C
(b) Vitamin D
(c) Vitamin B_{12}
(d) Vitamine E
149. BOD of waste wateris estimated by measuring the amount of:
(a) Total organic matter
(b) Biodegradable organic matter
(c) Oxygen evolution
(d) Oxygen consumption
150. The technology of biogas production from cow dung was developed in India largely due to the efforts of:
(a) Gas Authority of India
(b) Oil and Natural Gas Commission
(c) Indian Agricultural Research Institute and Khadi \& Village Industries Commission
(d) Indian Oil Corporation

Section A

151. Assisted reproductive techonology in which sperm is directly injected into the ovum is:
(a) ICSI (in - vivo)
(b) IUI (in - vivo)
(c) ZIFT (in - vitro)
(d) ICSI (in - vitro)
152.

In above diagram which is shown and identify ' A '
(a) Vasectomy, Vasdeferens
(b) Tubectomy, Fallopian tube
(c) Tubectomy, Ovary
(d) Vasectomy, Epididymis
153. Consider the following statements with two blanks A and B. Select the option which correctly fills up these blanks.
Government of India legalized MTP in \underline{A} with some strict conditions to avoid its misuse. Such restrictions are all the more important to check indiscriminate and illegal \underline{B} foeticides which are reported to tbe high in India.

	A	B	A	B
(a)	1951	Female	(b) 1971	Male
(c)	1971	Female	(d) 1951	Male

154. Which of the following route of sperm is correct from seminiferous tubules to outside?
(a)Rete testis \rightarrow Vas deferens \rightarrow Epididymis \rightarrow Ejaculatory duct
(b) Vasa efferentia \rightarrow Vas deferens \rightarrow Rete testis \rightarrow Epididymes
(c) Epididymes \rightarrow Rete testis \rightarrow Vasa efferentia \rightarrow Vas deferens
(d) Rete testis \rightarrow Vasa efferentia \rightarrow Epidiymis \rightarrow Vas deferens
155. The figure below show four stage (A, B, C, D) of human development. Select the option giving correct identification together with site of occurance?

(A)

(B)

	Figure	Development stage	Site of occurrence
a	A	Fertilised egg	Isthmus part of fallopian tube
b	B	Zygote	End part of fallopian tube
c	C	Morula	Starting point of Fallopian tube
d	D	Blastocyst	Uterine cavity

156. Read the following
(A) It is a thick layer of smooth muscles
(B) It is highly glandular layer
(C) It exhibits strong contraction during delivery of baby
(D) Progesteron causes hypertrophy inn myometrium
Which of the above statements are correct with respect to myometrium?
(a) A and B
(b) B, C and D
(c) A and C
(d) A, B and C
157. Given below are four statements (a-d) regarding assisted reproductive technologies (ART):
(A) ZIFT - The zygote or early embryo (with upto 8 blastomere) transferred into the fallopian tube
(B) ICSI - A sperm is directl injected into the fallopian tube to form an embryo in the laboratory
(C) AI - The semen collected either from the husband or healthy donor is artificially introduced either into the vagina or into the uterus
(D) GIFT - Transfer of zygote collected from a donor into the fallopian tube of another female who cannot produce one but can provide suitable environment for fertilization and development
Which two of the above statement are correct?
(a) A and D
(b) B and C
(c) A and C
(d) B and D
158. Assertion: The female external genitalia included mons pubis, labia major and labia minora.
Reason: The glandular tissue of each breast is divided into 5-10 mammary lobes.
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reson is not the correct explanation of assertion
(c) Assertion is true but reason is false
(d) Both assertion and reason are false
159. Read the given sentances carefully
(A) ' A ' is single
(B) the shape of ' A ' is like n inverted pear
(C) ' A ' opens into a vagina
(D) The wall of the ' A ' has three layes of tissue
Here ' A ' is :
(a) Ovary
(b) Uterus
(c) Urethra
(d) Fallopian tube
160. Use of which of the following has been found to be very effective as emergency contraceptive?
(A) IUD
(B) Progestogen - estrogen combinations
(C) Cervical cap
(d) Tubectomy
(a) A, B and C
(b) B, D and E
(c) A and B
(d) C, D and E
161. Receptors of opioids are present in:
(a) CNS
(b) GIT
(c) Both
(a) \& (b)
(d) Spleen
162. HIV that causes AIDS, first started destroying:
(a) N-K cell
(b) T-Killer cell
(c) T-helper cell
(d) B-Cell
163. A person had developed interferon in his body. He seems to carry infection of:
(a) Tetanus
(b) Malaria
(c) Measles
(d) Typhoid
164.

Choose the correct option about given below

A
(a) Hallucinogen
(b) Morphine
(c) Heroin
(d) Datura

> B

Depressant
Datura
Cannabinoids
Morphine
165. Read the following (A-D)
(A) Avoid stagnation of water in and around residential areas
(B) Regular cleaning of household coolers
(C) Intoducing fishes like Gambusia in ponds that feed on mosquito larvae
(D) Spraying of insecticides

Above preventive measures are used to control of
(a) Malaria
(b) Typhoid
(c) Pneumonia
(d) Amebiasis
166. The immediate adverse effects of drugs and alcohol abuse are manifested in the form of:
(a) Anxiety, Shakiness, Nausea, Sweating
(b) Reckless behavior, Vandalism, Violence
(c) Death
(d) Fever
167. Major part of the organic matter in the swage wate is decomposed in:
(a) Primary treatment
(b) Aeration tank/oxidation pond
(c) Anaerobic sludge diagester
(d) Tertiary treatement
168. \qquad produces an army of proteins in response to pathogens into our blood to fight with them:
(a) Neutrophils
(b) Basophils
(c) B-lymphocytes
(d) Helper T-cell
169. Some times, due to genetic and other unknown reasons, the body attacks selfcells this results in damage to the body is called as?
(a) Anaphylactic shock
(b) Autoimmune disease
(c) Hyper sensitivity
(d) Immunopotentiation
170. Where immature lymphocytes differentiate into antigen sensitive lymphocyte:
(a) M.A.L.T
(b) Primary lymphoid organs
(c) Secondary lymphoid organs
(d) Spleen
171. Which of the following is a bacterial disease?
(a) Dysentery
(b) Dengue
(c) Malaria
(d) Chicken pox
172. After getting into the body of the person HIV virus enters into macrophages where RNA genome of the virus replicates to form viral DNA with the help of?
(a) DNA polymerase
(b) Transcriptase
(c) Reverse transcriptase
(d) Protease
173. Which of the following is correct about malaria?
(a)Malignant malaria is caused by Plasmodium falciparum
(b)Plasmodium enters the human body as sporpzoites
(c)It is caused through the bite of infected female Anopheles
(d) The rupture of R.B.Cs is associated with released of a toxic substance, haemozoin
(a) Only B and C
(b) Only A, C and D
(c) A, B, C and D
(d) Only C and D
174.

What is the correct about given above:
(a) Pain killer
(b) Stimulant
(c) Hallucinogen
(d) Hypnotic
175. Which one of the following is a wrong matching of a microbe and its industrial product, while the remaining three are correct?
(a) Yeast - statins
(b) Acetobacter aceti - acetic acid
(c) Clostridium butylicum-lactic acid
(d) Aspergillus niger - citric acid
176. Assertion: Streptococcus pneumoniae and Haemophilus influenza are responsible for causing infectious disease in human beings.
Reason: A healthy person acquires the infection by inhailing the droplets/aerosols released by an infected person
(a) Both assertion and reason are ture and reason is the correct explanation of assertion
(b) Both assertion and reason are true but reason is not the correct explanation of assertion
(c) Assertion is true but reason is false
(d) Both assertion and reason are false
177. During copulation, semen is released by penis into which of the following labelled parts as A, B, C, D in the given diagram?

(a) A - Vagina
(b) B - Cervix
(c) C - Uterine cavity
(d)D - Infundibulum
178. Decline in the level of which hormone of menstrual cycle is directly responsible for degeneration of corpus luteum?
(a) Estrogen
(b) Progesterone
(c) LH
(d) FSH
179. Placenta acts as endocrine tissue and produces several hormones. Following are hormones produced in women only during pregnancy except
(a) hCG
(b) hPL
(c) hCS
(d) Estrogen
180. In the structure of blastocyst, the stem cells for the formation of whole embryo are from
(a) Trophoblast cells
(b) Cells of Blastocoel
(c) Inner cell mass
(d) Granulosa cells
181. Assertion: Virus - inflected cells secrete proteins known as interferons.
Reason: Interferons protect the noninfected cells from bacterial infection.
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reason is not the correct explanation of assertion
(c) Assertion is true but reason is false
(d) Both assertion and reason are false
182. How many of the following are copper releasing IUD's?
LNG -20, CuT, Cu7, Progestasert, Multiload - 375
(a) 2
(b) 1
(c) 3
(d) 4
183. Which of the following is a Cu releasing IUD and its function?
(a) Mutiload 375- Suppose sperm motility and fertilizing capacity of sperms
(b) Progestasert - Makes uterus unsuitable for implantation and cervix hostile to sperms
(c) Lippes loop- Increase phagocytosis of sperms
(d)LNG-20-Inhibits ovulation and implantation as well as aler the quality of cervical mucus to prevent/retard entry of sperms
184. After some time of ejaculation, semon liquefies dut to presence of an enzyme which is found in secretion of:
(a) Vagina
(b) Seminal vesicle
(c) Prostate
(d) Cowpers gland
185. It is diagrammatic view of male reproductive system. Choose the correct option about A, B, C and D

A		B	C	D
a	Vasa efferentia	Vas deferens	Prostate	Fore - skin
b	Epididymis	Vasa efferentia	Seminal vesicle	Glans penis
c	Rete testis	Ureter	Bulbo- urethral gland	Glans penis
d	Epididymis	Vas defrens	Urethra	Fore skin

Section B

186. The first sign of growing foetus may be noticed by
(a) Movement of fetus
(b) Appearance of hair on head
(c) Listening to the heart sound carefully through the stethoscope
(d) Formation of limbs
187. Extrusion of second polar from egg occurs
(a)Simultaneously with first cleavage
(b)after entry of sperm but before fertilization
(c) after fertilization
(d)before entry of sperm into ovum
188. The cellular layer that disintegrates and regenerates again and again in humans is:
(a) Endothelium of blood vessels
(b) Germinal cpithclium of ovary
(c) Tunica propria of seminiferous tubules
(d) Endometrium of uterus
189. Choose the correct option for filling up the blanks:
The human male ejaculates about \qquad million sperms during a coitus of which, for normal fertility, at least \qquad percent sperms must have normal shape and size and least \qquad percent of them must show vigorous motility
(a) 100-200, 40, 60
(b) $200-300,60,40$
(c) $300-400,50,30$
(d) $500,70,70$
190. Which of the following is incorrectly paired with its function?

(a) Ovary	Synthesis and secretion of steroid hormones
(b) Fimbriae	Collection of the ovum after ovulation
(c) Seminal	Produces a sugar Vesicle containing fluid to nourish sperm
(d)Bulbourethral Glands	Secret alkaline fluid to destroys the acidity of the urethra

191. Identify the contraceptive device shown below as well as the related right place of its implantation into a woman and select the correct option for the two together:

	Contraceptive	Site of implant
a	LNG-20	F al lopian tube
b	Lippes loop	Uterine wall
c	Implants	Subcutanceous
d	Multiload -375	Uterine wall

192. Which of the following is not correct about pneumonia?
(A)It is caused by Streptococcus pneumoniae
(B)Infects the alveoli of the lungs
(C)Symptoms of pneumonia include fever, chills, cough and headache
(D)In all case the lips and finger nails turn blue to grayish in colour
(a) A, B and D
(b) B and D
(c) D only
(d) A, B, C and D
193. A plant, native of south America is a source of a drug of addiction which is CNS stimulant this drug inhibits transport of
(a) Acetylcholine
(b) Dopamine
(c) Serotonin
(d) Adrenaline
194. Statemnet I: Proto-oncogenes are cellular genes require: for normal growth
Statement II: Under normal conditions they could lead to the oncogenic transformation of the cell.
(a) Both statements are correct
(b) Statement I is correct and II is incorrect
(c) Statement I is incorrect and II is correct
(d) Both statements are incorrect
195. According to the 2011 census report, the population growth rate was still around
\qquad and could double in \qquad years
(a) $11 / 1000 / \mathrm{yr}, 35$
(b) 20/1000/yr,33
(c) $25 / 1000 / \mathrm{yr}, 18$
(d) $17 / 100 / \mathrm{yr}, 33$
196. Mature Graafian follicle is generally present in the ovary of a healthy human female around.
(a) $5-8$ day of menstrual cycle
(b) 11-17 day of menstrual cycle
(c) 18-23 day of menstrual cycle
(d) $24-28$ day of menstrual cycle
197. Statement I: Morphine is very effective and sedative painkiller
Statement II: It is very useful for the patients who have depression.
(a) Both statements are correct
(b) Statement I is correct \& II is incorrect
(c) Statement I is incorrect \& II is correct
(d) Both statements are incorrect
198. Match the following list of bacteria and their commercially important products

Bacterium	Products
i) Aspergillus niger	(a) Lactic acid
ii) Acetobacter aceti	(b)Butyric acid
iii)Clostridium butylicum	(c)Acetic acid
iv) Lactobacillus	(d) Citric acid

Choose the correct match
(a) i-(b), ii - (c) , iii - (d), iv - (a)
(b) i - (b), ii - (d), iii - (c), iv - (a)
(c) i - (d), ii - (c), iii - (b), iv - (a)
(d) i - (d), ii - (a), iii - (c), iv - (b)
199. Which of the following statements regarding antibiotic is correct?
(i)Penicillin was the first antibiotic discovered by Alexander Fleming (1928) while working on bacterium Streptococcus
(ii) Fleming, chain and Florey were awarded the Nobel Prize in 1945
(iii) The full potential of penicillin as an effective antibiotic was established by Ernest chain and Howard Florey
(iv) Antibiotics are the chemicals secreted from microorganisms which can kill or retard the growth of other harmful microorganisms.
(a) (i) only
(b) (i), (ii) and (iii)
(c) (ii) and (iii)
(d) (ii), (iii) and (iv)
200. Mark the given statements True (T) or False (F)
(i) The human male ejaculates about 50 100 million sperms during a coitus
(ii) For normal fertility at least 40 percent sperms must have normal shape and size (iii) Subsequent encounter with the same pathogen elicits a highly intensified anamnestic response
(iv) This is based on the fact that our body appears to have memory of the first encounter.
(v) Malignant tumors remain in place to form compactmass by a process known as metastasis
(vi) Syphilis, gonorrhea and AIDS are STDs.
(vii) Syphilis, gonorrhea and AIDS are transmitted through sexual intercourse.
(viii) Streptococcus thermophilus increases nutritional value of milk
(ix) Curd and yoghurt have higher vitamin content than milk.
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
(a) $\mathrm{F} \quad \mathrm{F}$ T T F T T T T
(b) $\mathrm{T} \quad \mathrm{F} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{T}$
(c) $\mathrm{T} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{T}$
(d) $\mathrm{F} \mathrm{F} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{T}$

